Taxis of Pseudomonas putida F1 toward phenylacetic acid is mediated by the energy taxis receptor Aer2.

نویسندگان

  • Rita A Luu
  • Benjamin J Schneider
  • Christie C Ho
  • Vasyl Nesteryuk
  • Stacy E Ngwesse
  • Xianxian Liu
  • Juanito V Parales
  • Jayna L Ditty
  • Rebecca E Parales
چکیده

The phenylacetic acid (PAA) degradation pathway is a widely distributed funneling pathway for the catabolism of aromatic compounds, including the environmental pollutants styrene and ethylbenzene. However, bacterial chemotaxis to PAA has not been studied. The chemotactic strain Pseudomonas putida F1 has the ability to utilize PAA as a sole carbon and energy source. We identified a putative PAA degradation gene cluster (paa) in P. putida F1 and demonstrated that PAA serves as a chemoattractant. The chemotactic response was induced during growth with PAA and was dependent on PAA metabolism. A functional cheA gene was required for the response, indicating that PAA is sensed through the conserved chemotaxis signal transduction system. A P. putida F1 mutant lacking the energy taxis receptor Aer2 was deficient in PAA taxis, indicating that Aer2 is responsible for mediating the response to PAA. The requirement for metabolism and the role of Aer2 in the response indicate that P. putida F1 uses energy taxis to detect PAA. We also revealed that PAA is an attractant for Escherichia coli; however, a mutant lacking a functional Aer energy receptor had a wild-type response to PAA in swim plate assays, suggesting that PAA is detected through a different mechanism in E. coli. The role of Aer2 as an energy taxis receptor provides the potential to sense a broad range of aromatic growth substrates as chemoattractants. Since chemotaxis has been shown to enhance the biodegradation of toxic pollutants, the ability to sense PAA gradients may have implications for the bioremediation of aromatic hydrocarbons that are degraded via the PAA pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aromatic acids are chemoattractants for Pseudomonas putida.

A quantitative capillary assay was used to show that aromatic acids, compounds that are chemorepellents for Escherichia coli and Salmonella sp., are chemoattractants for Pseudomonas putida PRS2000. The most effective attractants were benzoate; p-hydroxybenzoate; the methylbenzoates; m-, p-, and o-toluate; salicylate; DL-mandelate; beta-phenylpyruvate; and benzoylformate. The chemotactic respons...

متن کامل

Signal Balancing by the CetABC and CetZ Chemoreceptors Controls Energy Taxis in Campylobacter jejuni

The coupling of environmental sensing to flagella-mediated directed motility allows bacteria to move to optimum environments for growth and survival, either by sensing external stimuli (chemotaxis) or monitoring internal metabolic status (energy taxis). Sensing is mediated by transducer-like proteins (Tlp), either located in the membrane or in the cytoplasm, which commonly influence motility vi...

متن کامل

A methyl-accepting protein is involved in benzoate taxis in Pseudomonas putida.

Pseudomonas putida is attracted to at least two groups of aromatic acids: a benzoate group and a benzoylformate group. Members of the benzoate group of chemoattractants stimulated the methylation of a P. putida polypeptide with an apparent molecular weight of 60,000 in sodium dodecyl sulfate-polyacrylamide gels. This polypeptide is presumed to be a methyl-accepting chemotaxis protein for severa...

متن کامل

Metabolism-dependent taxis and control of motility in Pseudomonas putida

............................................................................................... III ABBREVIATIONS ....................................................................................... IV LIST OF PUBLICATIONS .............................................................................. V SAMMANFATTNING PÅ SVENSKA .............................................................. VI

متن کامل

Possible regulatory role for nonaromatic carbon sources in styrene degradation by Pseudomonas putida CA-3.

Styrene metabolism in styrene-degrading Pseudomonas putida CA-3 cells has been shown to proceed via styrene oxide, phenylacetaldehyde, and phenylacetic acid. The initial step in styrene degradation by strain CA-3 is oxygen-dependent epoxidation of styrene to styrene oxide, which is subsequently isomerized to phenylacetaldehyde. Phenylacetaldehyde is then oxidized to phenylacetic acid. Styrene, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 79 7  شماره 

صفحات  -

تاریخ انتشار 2013